// //
Дом arrow Научная литература arrow теплогазоснабжение arrow В исследованиях иногда недостаточно знать функцию распределения
В исследованиях иногда недостаточно знать функцию распределения

IV. Обработка результатов научных исследований

 

Во многих случаях необходимо исследовать случайные, вероятные процессы. Обычно технологические процессы выполняются в условиях непрерывного меняющейся обстановки: вынужденные простои машин, неравномерная работа транспорта, непрерывное изменение внешних факторов и т.д. Те или иные события могут произойти или не произойти. В связи с этим приходится анализировать случайные, вероятностные связи, в которых каждому аргументу соответствует множество значений функции. Наблюдения показали, что, несмотря на случайный характер связи, рассеивание имеет вполне определенные закономерности. Для таких статистических законов теория вероятностей позволяет представить исход не одного какого-либо события, а средний результат случайных событий и тем точнее, чем больше число анализируемых явлений. Это связано с тем, что, несмотря на случайный характер событий, они подчиняются определенным закономерностям, рассматриваемым в теории вероятностей.

Теория вероятностей изучает случайные события и базируется на следующих основных показателях. Совокупность множества однородных событий случайной величины х составляет первичный статистический материал. Совокупность, содержащая самые различные варианты массового явления, называют генеральной совокупностью или большой выборкой N. Обычно изучают лишь часть генеральной совокупности, называемой выборочной совокупностью или малой выборкой N1. Вероятностью р(х) события х называют отношение числа случаев N(х), которые приводят к наступлению события х к общему числу возможных случаев N:

 

Лекции 

 

Теория вероятностей рассматривает теоретические распределения случайных величин и их характеристики.

Математическая статистика занимается способами обработки и анализа эмпирических событий. Эти две науки составляют единую математическую теорию массовых случайных процессов, широко применяемую в научных исследованиях.

В математической статистике большое значение имеет понятие о частоте событийЛекции, представляющего собой отношение числа случаев n(x), при которых имело место событие к общему числу событий n:

Лекции

 

При неограниченном возрастании числа событий частота y(x) стремится к вероятности р(х). Частота Лекции характеризует вероятность появлений случайной величины и представляет собой ряд распределения (рис.1), а плавная кривая – закон распределения F(x).

Вероятность случайной величины (события) – это количественная оценка возможности ее появления. Достоверное событие имеет вероятность р=1, невозможное событие р=0. Следовательно, для случайного события

0

Лекции

 

В исследованиях иногда недостаточно знать функцию распределения. Необходимо еще иметь ее характеристики: среднеарифметическое и математическое ожидания, дисперсию, размах ряда распределения.

Пусть среди n событий случайная величина х1 повторяется n1 раз, величина х2 – n2 раза и т.д. Тогда среднеарифметическое значение х имеет вид:


Лекции

 

Размах можно использовать для ориентировочной оценки вариации ряда событий:

 

Лекции

 

Лекциигде: - максимальное и минимальное значение измерительной величины или погрешности.

Если вместо эмпирических частот y1 ….. yn принять их вероятности

р1 …..рn, то это даст важную характеристику распределения – математическое ожидание:

Лекции

 

Для непрерывных случайных величин математическое ожидание определяется интегралом:

Лекции

 

т.е. оно равно действительному значению хд наблюдаемых событий. Таким образом, если систематические погрешности измерений полностью исключены, то истинное значение измеряемой величины равно математическому ожиданию, а соответствующая ему абсцисса называется центром распределения.

 

Контакты

115419, г. Москва, ул. Шаболовка, д. 34, стр. 3.



Просьба заранее предупредить о приезде, т.к. специалисты распределены по объектам




info@masterbetonov.ru




ООО «Стройсервис» работает на рынке строительного производства c 1992 года.
Основной ценностью для нашей компании являются клиенты, поскольку единственный реальный актив компании — это люди, удовлетворенные нашей работой, которые еще раз захотят воспользоваться нашими услугами. Мы стремимся сделать своих клиентов своими партнерами.