// //
Дом arrow Научная литература arrow ЦЕМЕНТЫ ИЗ СПЕЦИАЛЬНЫХ КЛИНКЕРОВ arrow Состав и технология получения глиноземистого цемента
Состав и технология получения глиноземистого цемента
Состав и технология получения глиноземистого цемента. Глиноземистый цемент в отличие от портландцемента не содержит ни гипса, ни активных минеральных добавок; только для интенсификации процесса помола допускается введение до 2 % добавок, не снижающих качество цемента. Иногда в глиноземистый цемент вводят до 20—30 % кислого, доменного гранулированного шлака, который способствует улучшению некоторых строительно-технических свойств глиноземистого цемента (снижению зкзотермии, уменьшению усадки и др.), а также удешевляет продукт.

Согласно ГОСТ 969-91 содержание глинозема А12О3 в глиноземистом цементе (ГЦ) должно быть не менее 35 %. Наряду с глиноземистыми цементами выпускают цементы высокоглиноземистые (ВГЦ) с содержанием А12О3 60—80 %. Так в цементе ВГЦ I должно быть не менее 60 %, в цементе ВГЦ II – не менее 70 %. а в цементе ВГЦ III – не менее 80 % А12О3. Влияние отдельных оксидов на технологию получения и свойства глиноземистого цемента сводится к следующему. А12О3 обеспечивает легкоплавкость сырьевой смеси и образование алюминатов кальция, определяющих строительно-технические свойства глиноземистого цемента. СаО входит в состав всех основных минералов цемента. По содержанию СаО цементы разделяют на высокоизвестковые (СаО более 40 %) и низкоизвестковые (СаО менее 40 %). SiO2 и Fe2O3 в целом нежелательные составляющие сырьевой смеси, однако в небольших количествах (SiO2 4—5 %, Fe2O3 5—10 %) они способствуют более равномерному плавлению шихты и улучшению процесса минералообразования. MgO уменьшает температуру плавления сырьевой смеси и вязкость расплавов, однако избыток MgO (более 2 %) снижает активность клинкера. Щелочи также снижают температуру плавления сырьевой смеси, но отрицательно влияют на качество цемента. Минералогический состав глиноземистого цемента зависит от состава исходного сырья и технологии производства. Важнейший минерал глиноземистого цемента — моноалюминат кальция СаО-А12О3, который обеспечивает при нормальных сроках схватывания быстрое твердение цемента. Однокальциевый алюминат может образовываться как по реакциям в твердой фазе, так и путем кристаллизации из расплава. Условия обжига и охлаждения определяют форму и размер кристаллов СА.

В состав глиноземистого цемента входят и другие низкоосновные алюминаты: 5СаО-ЗА12О3, 12СаО-7А12О3, СаО-2А12О3. C5A3 и C12A7 взаимодействуют с водой очень активно и схватываются уже в течение нескольких минут; СА2 гидратируется менее энергично. Присутствие в сырье кремнезема и оксида железа обусловливает образование в клинкере глиноземистого цемента белита и твердых растворов алюмоферритов. Гидравлическая активность фаз, содержащих оксид железа, значительно ниже активности чистых кальциевых алюминатов. Двухкальциевый силикат — фактически инертная составляющая глиноземистого цемента, поскольку в сроки его твердения гидратации C2S не происходит.

В качестве основного сырья для изготовления глиноземистого цемента используют бокситы и известняки (или известь). Боксит представляет собой гидроксид алюминия с примесями SiO2, Fe2O3, ТiO2, СаО и MgO. По количеству связанной воды различают бокситы, приближающиеся к диаспорам (А12О3-Н2О) и к гидроаргиллитам (А12О3-ЗН2О). Плотность боксита 2800—3500 кг/м3 в зависимости от содержания железа. Пригодность бокситов для производства глиноземистого цемента оценивают по величине их кремниевого модуля, представляющего отношение содержания А12О3 к SiO2 (по массе). Этот показатель должен быть не менее 5—6.

К известняку, используемому для производства глиноземистого цемента, не предъявляется каких-либо особых требований, кроме ограничения содержания SiO2 (до 1,5 %) и MgO (до 2 %). Особенно нежелательно присутствие в сырье кремнезема, который при взаимодействии с СаО и А12О3 образует геленит C2AS. На каждый процент кремнезема получается 4,5 % геленита. Поскольку геленит в кристаллическом виде гидравлической активностью не обладает, то значительная часть глинозема связывается в инертном соединении.

Для получения глиноземистого цемента используются способ спекания и способ плавления. Выбор способа в основном зависит от химического состава бокситов.

Способом спекания получают глиноземистый цемент во вращающихся или шахтных печах. Предварительно исходные сырьевые материалы высушивают, подвергают совместному тонкому измельчению, тщательно гомогенизируют и подают на обжиг в виде порошка или гранул. Сырьевая смесь спекается в печи в клинкер, который после охлаждения измельчается в тонкий порошок.

Ведение обжига клинкера   глиноземистого цемента затрудняется недостаточным интервалом между температурами спекания и плавления сырьевой смеси, что вызывает образование колец, сваров и приваров.   Кроме того, при спекании все нелетучие соединения, входящие в состав сырья, переходят в цемент. Поэтому получение глиноземистого цемента способом спекания требует чистого сырья с небольшим содержанием кремнезема (до 8 %) и оксидов железа (до 10 %). Несмотря на меньший расход топлива и более легкую размалываемость получаемого этим способом клинкера, способ спекания менее распространен.

Способ плавления при производстве глиноземистого цемента получил большее распространение, что объясняется сравнительно низкими температурами плавления сырьевых смесей (1380—1600 °С), возможностью использования грубомолотой сырьевой смеси с большим количеством примесей, которые частично при обжиге удаляются. Плавление шихты осуществляют в восстановительной и окислительной атмосфере в вагранках, доменных печах, электрических дуговых печах и конверторах.

В электродуговые печи загружают известь, прокаленныё до полного удаления воды бокситы, железную руду, металлический лом и кокс. При плавке оксиды железа и кремния, присутствующие в сырье, восстанавливаются и, реагируя между собой, образуют ферросилиций. В результате при использовании боксита, содержащего 15— 17 % SiO2, в цементе количество кремнезема снижается до 6—8 %. Так как плотность ферросилиция 6,5 г/см3, а расплавленного цемента 3 г/см3, расплав ферросилиция, осаждаясь, отделяется от расплава цемента. Сливая раздельно верхний и нижний слои расплава, получают два продукта — клинкер глиноземистого цемента и ферросилиций, используемый в металлургической промышленности. Плавка идет при 1800—2000 °С, апериодический выпуск расплава из печи в изложницы — при 1550—1650 °С. Охлажденный клинкер поступает на дробление и помол. Плавка в электрических печах обеспечивает получение глиноземистого цемента высокого качества, но требует большого расхода электроэнергии.

Способ доменной плавки чугуна и высокоглиноземистого шлака за рубежом называют «русским способом производства глиноземистого цемента». Сырьевую смесь, состоящую из железистого боксита, известняка, металлического лома и кокса, послойно загружают в печь. В результате доменного процесса получают из руды расплавленный чугун, а в виде шлака — расплав глиноземистого клинкера. Температура выпускаемого из домны расплава глиноземистого шлака 1600—1700 °С, а чугуна — 1450—1500 °С. Расплавленный глиноземистый шлак разливают в изложницы, где он медленно охлаждается и кристаллизуется. Количество получаемого чугуна примерно равно количеству клинкера. Бокситы, используемые при доменной плавке, могут содержать неограниченное количество Fe2O3, так как железо восстанавливается и переходит в состав чугуна. Однако SiO2 при доменной плавке восстанавливается в небольшой степени, поэтому требуются применение малокремнеземистого боксита и строгий контроль химического состава обжигаемой шихты. Обжиг в доменной печи очень экономичен, так как плавление сырья происходит за счет того же топлива, которое необходимо для выплавки чугуна.

В процессе нагревания сырьевой шихты при 450— 1000 °С удаляется вода из бокситов, при 900 °С разлагается СаСОз, а при 1000—1100 °С происходит распад глинистых минералов. Взаимодействие между СаО и А12О3 начинается при 800—900 °С с образованием в качестве первичной фазы однокальциевого алюмината. При 1000— 1100 °С образуется СА2, а выше 1200 °С — С5А3 и С3А. Образование алюмоферритов происходит при температуре более 1200 °С.

Микроструктура и качество плавленого клинкера определяются режимом охлаждения. При медленном охлаждении кристаллы растут в благоприятных условиях и достигают больших размеров. Быстроохлажденный клинкер содержит значительное количество не успевшей закристаллизоваться стекловидной фазы. Характерная для глиноземистых цементов высокая начальная прочность проявляется только у цементов, изготовленных из равномерно закристаллизованных, т. е. медленно охлажденных клинкеров.

Плавленый глиноземистый клинкер отличается высокой твердостью, поэтому необходимо его предварительное двухстадийное дробление в мощных дробилках. Продукт дробления подвергают электромагнитной сепарации для отделения металлического железа и ферросилиция.

Помол дробленого глиноземистого клинкера производят в шаровых мельницах. Для интенсификации помола применяют углеродсодержащие вещества (угольную мелочь, сажу). Вследствие большого износа мелющих тел при помоле глиноземистого цемента необходимо чаще, чем при помоле портландцемента, производить догрузку и перегрузку мельниц. Расход электроэнергии на помол плавленых клинкеров примерно вдвое выше, чем на помол цементов, полученных способом спекания. Размол производят до остатка на сите № 008 не более 10 %.

 

Контакты

115419, г. Москва, ул. Шаболовка, д. 34, стр. 3.



Просьба заранее предупредить о приезде, т.к. специалисты распределены по объектам




info@masterbetonov.ru




ООО «Стройсервис» работает на рынке строительного производства c 1992 года.
Основной ценностью для нашей компании являются клиенты, поскольку единственный реальный актив компании — это люди, удовлетворенные нашей работой, которые еще раз захотят воспользоваться нашими услугами. Мы стремимся сделать своих клиентов своими партнерами.